ON Hom (\cdot, \cdot) AS B-ALGEBRAS

N. O. AL-SHEHRI
Department of Mathematics
Faculty of Education, Science Sections
King Abdulaziz University
Jeddah, Saudi Arabia

Abstract

In this paper, we give an example to show that Hom(\cdot, \cdot) may not, in general, be a B-algebra. Moreover, we find conditions under which Hom(\cdot, \cdot) is a B-algebra. Also, we introduce the notion of an orthogonal subset and discuss some related properties.

1. Introduction

Iseki and Tanaka introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [4, 5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3] Hu and Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [9] the authors introduced the notion of d-algebras, which is another useful generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Jun et al. [7] introduced a new notion, called BH-algebras, which is a generalization of BCH, BCI, BCK-algebras. They also defined the notions of ideals in BH-algebras. Recently Neggers and Kim [10] introduced the notion of B-algebra, and then Cho and Kim [1] studied some of its properties. In [6] Jun and Meng investigated some properties of Hom(X, Y) the set of all homomorphisms of a BCI-algebra X into an arbitrary BCI-algebra Y.

2010 Mathematics Subject Classification: 06F35.

Keywords and phrases: associative B-algebra, 0-commutative B-algebra, B-algebra.

Received March 5, 2010
algebra Y. In this paper, we investigate some properties of $\text{Hom}(X, Y)$ as B-algebras. We show that $\text{Hom}(X, Y)$ may not, in general, be a B-algebra for an arbitrary B-algebra, and we prove that if X is a B-algebra and Y is an associative B-algebra, then $\text{Hom}(X, Y)$ is an associative B-algebra. Also, we prove that if X is a B-algebra and Y is a 0-commutative B-algebra, then $\text{Hom}(X, Y)$ is a 0-commutative B-algebra. Also, we introduce the notion of orthogonal subsets and investigate some related properties.

2. Preliminaries

Definition 2.1 [10]. A B-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:

(I) $x * x = 0$,

(II) $x * 0 = x$,

(III) $(x * y) * z = x * (z * (0 * y))$,

for all $x, y, z \in X$.

Proposition 2.2 [10]. If $(X, *, 0)$ is a B-algebra, then

(1) $(x * y) * (0 * y) = x$,

(2) $x * (y * z) = (x * (0 * z)) * y$,

(3) $x * y = 0$ implies $x = y$,

(4) $0 * (0 * x) = x$,

for all $x, y, z \in X$.

Theorem 2.3 [10]. $(X, *, 0)$ is a B-algebra if and only if it satisfies the following axioms:

(5) $x * x = 0$,

(6) $0 * (0 * x) = x$,

(7) $(x * z) * (y * z) = x * y$,

(8) $0 * (x * y) = y * x$,

for all $x, y, z \in X$.
Definition 2.4 [8]. A B-algebra $(X, \ast, 0)$ is said to be 0-commutative if
\[x \ast (0 \ast y) = y \ast (0 \ast x), \]
for all $x, y \in X$.

Proposition 2.5 [8]. If $(X, \ast, 0)$ is a 0-commutative B-algebra, then

(9) $(0 \ast x) \ast (0 \ast y) = y \ast x,$
(10) $(z \ast y) \ast (z \ast x) = x \ast y,$
(11) $(x \ast y) \ast z = (x \ast z) \ast y,$
(12) $(x \ast (x \ast y)) \ast y = 0,$
(13) $(x \ast z) \ast (y \ast t) = (t \ast z) \ast (y \ast x),$

for all $x, y, z, t \in X$.

A B-algebra X is said to be associative if $(x \ast y) \ast z = x \ast (y \ast z)$, for all $x, y, z \in X$. A nonempty subset S of X is called a subalgebra of X if $x \ast y \in S$, for all $x, y \in S$.

Definition 2.6 [10]. A nonempty subset N of a B-algebra X is said to be normal subalgebra of X if
\[(x \ast a) \ast (y \ast b) \in N, \]
for any $x \ast y, a \ast b \in N$.

A mapping $f : x \rightarrow y$ between B-algebras X and Y is called a homomorphism if $f(x \ast y) = f(x) \ast f(y)$, for all $x, y \in X$. Define the trivial homomorphism 0 as $0(x) = 0$, for all $x \in X$. Denote by $\text{Hom}(X, Y)$ the set of all homomorphisms of a B-algebra X into a B-algebra Y (see [11]).

3. $\text{Hom}(\ast, \ast)$ as B-algebras

Let $\text{Hom}(X, Y)$ be the set of all homomorphisms of a B-algebra X into a B-algebra Y. In the following example, we show that $(\text{Hom}(X, Y), \ast, 0)$ may not be a B-algebra in general, where \ast is defined as follows:
\[(f \ast g)(x) = f(x) \ast g(x), \quad \forall f, g \in \text{Hom}(X, Y), \forall x \in X, \]
and 0 is a trivial homomorphism from a B-algebra X into a B-algebra Y.
Example 3.1. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a B-algebra with Cayley table (Table 1) as follows:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $f : X \to X$ by $f(x) = 0$, for all $x \in X$, and a map $g : X \to X$ by $g(x) = x$, for all $x \in X$. Then it is easily checked that $f, g \in Hom(X, Y)$, but $f \ast g \notin Hom(X, Y)$ for

$$(f \ast g)(3 \ast 1) = (f \ast g)(4) = f(4) \ast g(4) = 4$$

and

$$(f \ast g)(3) \ast (f \ast g)(1) = (f(3) \ast g(3)) \ast (f(1) \ast g(1)) = 3 \ast 2 = 5,$$

therefore,

$$(f \ast g)(3 \ast 1) \neq (f \ast g)(3) \ast (f \ast g)(1).$$

Hence, $Hom(X, Y)$ is not a B-algebra.

Theorem 3.2. If X is a B-algebra and Y is an associative B-algebra, then $Hom(X, Y)$ is an associative B-algebra.

Proof. Let $f, g \in Hom(X, Y)$ and $x \in X$. Then

$$(f \ast g)(x \ast y) = f(x \ast y) \ast g(x \ast y)$$

$$= (f(x) \ast f(y)) \ast (g(x) \ast g(y))$$

$$= f(x) \ast ((f(y) \ast g(x)) \ast g(y))$$

$$= (f(x) \ast (0 \ast g(y))) \ast (f(y) \ast g(x)) \quad \text{by (2)}$$
ON Hom (-, -) AS B-ALGEBRAS

\[
= ((f(x) \ast 0) \ast g(y)) \ast (f(y) \ast g(x)) \\
= (f(x) \ast g(y)) \ast (f(y) \ast g(x)) \text{ by (II)} \\
= (f(x) \ast (g(y) \ast f(y))) \ast g(x) \\
= f(x) \ast (g(x) \ast (0 \ast (g(y) \ast f(y)))) \text{ by (III)} \\
= f(x) \ast (g(x) \ast (f(y) \ast g(y))) \text{ by (III)} \\
= (f(x) \ast g(x)) \ast (f(y) \ast g(y)) \\
= (f \ast g)(x) \ast (f \ast g)(y).
\]

Then \(f \ast g \in \text{Hom}(X, Y) \), for all \(f, g \in \text{Hom}(X, Y) \). Since \(Y \) is a \(B \)-algebra, it is easy to prove that the axioms in Definition 2.1 are satisfied for all \(f, g, h \in \text{Hom}(X, Y) \), and so \(\text{Hom}(X, Y) \) is a \(B \)-algebra. Now let \(f, g, h \in \text{Hom}(X, Y) \) and \(x \in X \). Then

\[
((f \ast g) \ast h)(x) = (f(x) \ast g(x)) \ast h(x) = f(x) \ast (g(x) \ast h(x)) = (f \ast (g \ast h))(x),
\]

because \(Y \) is an associative \(B \)-algebra, and the proof is completed.

Theorem 3.3. If \(X \) is a \(B \)-algebra and \(Y \) is a 0-commutative \(B \)-algebra, then \(\text{Hom}(X, Y) \) is a 0-commutative \(B \)-algebra.

Proof. Let \(f, g \in \text{Hom}(X, Y) \) and \(x \in X \). Then

\[
(f \ast g)(x \ast y) = f(x \ast y) \ast g(x \ast y) \\
= (f(x) \ast f(y)) \ast (g(x) \ast g(y)) \\
= (g(y) \ast f(y)) \ast (g(x) \ast f(x)) \text{ by (13)} \\
= (0 \ast (f(y) \ast g(y))) \ast (0 \ast (f(x) \ast g(x))) \text{ by (8)} \\
= (f(x) \ast g(x)) \ast (f(y) \ast g(y)) \text{ by (9)} \\
= (f \ast g)(x) \ast (f \ast g)(y).
\]
Therefore, \(f \ast g \in \text{Hom}(X, Y) \), for all \(f, g \in \text{Hom}(X, Y) \). Since \(Y \) is a \(B \)-algebra, it is easy to prove that the axioms in Definition 2.1 are satisfied for all \(f, g, h \in \text{Hom}(X, Y) \), and so \(\text{Hom}(X, Y) \) is a \(B \)-algebra. Let \(f, g \in \text{Hom}(X, Y) \) and \(x \in X \).

Then

\[
((f \ast 0) \ast g)(x) = (f(x) \ast 0) \ast g(x) = g(x) \ast (0 \ast f(x)) = ((g \ast 0) \ast f)(x),
\]

because \(Y \) is a 0-commutative \(B \)-algebra, and the proof is completed.

Definition 3.4. Let \(M \) and \(\Theta \) be subsets of \(X \) and \(\text{Hom}(X, Y) \), respectively. We define orthogonal subsets \(M^\perp \) and \(\Theta^\perp \) of \(M \) and \(\Theta \), respectively, by

\[
M^\perp = \{ f \in \text{Hom}(X, Y) | f(x) = 0, \text{ for all } x \in M \}
\]

and

\[
\Theta^\perp = \{ x \in X | f(x) = 0, \text{ for all } f \in \text{Hom}(X, Y) \}.
\]

Theorem 3.5. Let \(X \) be a \(B \)-algebra, \(Y \) be an associative \(B \)-algebra, \(M \subseteq X \) and \(\Theta \subseteq \text{Hom}(X, Y) \). Then \(M^\perp \) and \(\Theta^\perp \) are normal subalgebras of \(\text{Hom}(X, Y) \) and \(X \), respectively.

Proof. Let \(f \ast g, h \ast k \in M^\perp \). Then \((f \ast g)(x) = 0 \), for all \(x \in M \) and \((h \ast k)(x) = 0 \), for all \(x \in M \), by Theorem 3.2, we have that \(\text{Hom}(X, Y) \) is an associative \(B \)-algebra. Thus

\[
((f \ast h) \ast (g \ast k))(x) = (((f \ast h) \ast g) \ast k)(x)
\]

\[
= (((f \ast (g \ast (0 \ast h))) \ast k)(x) \text{ by (III)}
\]

\[
= ((f \ast ((g \ast 0) \ast h)) \ast k)(x)
\]

\[
= ((f \ast (g \ast h)) \ast k)(x) \text{ by (II)}
\]

\[
= ((f \ast g) \ast (h \ast k))(x)
\]

\[
= (f \ast g)(x) \ast (h \ast k)(x) = 0,
\]

for all \(x \in M \). Thus, \((f \ast h) \ast (g \ast k) \in M^\perp \), and so \(M^\perp \) is normal subalgebra of \(\text{Hom}(X, Y) \).
Now let \(x \ast y, a \ast b \in \Theta^\perp \), hence \(f(x \ast y) = 0 \) and \(f(a \ast b) = 0 \), for all \(f \in \text{Hom}(X, Y) \). Since \(Y \) is an associative \(B \)-algebra, in similar way we can prove that \(f((x \ast a) \ast (y \ast b)) = 0 \), for all \(f \in \text{Hom}(X, Y) \), and then \((x \ast a) \ast (y \ast b) \in \Theta^\perp \), for all \(f \in \text{Hom}(X, Y) \). Therefore, \(\Theta^\perp \) is normal subalgebra of \(X \).

Theorem 3.6. Let \(X \) be a \(B \)-algebra, \(Y \) be a 0-commutative \(B \)-algebra, \(M \subseteq X \) and \(\Theta \subseteq \text{Hom}(X, Y) \). Then \(M^\perp \) and \(\Theta^\perp \) are normal subalgebras of \(\text{Hom}(X, Y) \) and \(X \), respectively.

Proof. Let \(f \ast g, h \ast k \in M^\perp \). Then \((f \ast g)(x) = 0 \), for all \(x \in M \) and \((h \ast k)(x) = 0 \), for all \(x \in M \), from Theorem 3.3 we know that \(\text{Hom}(X, Y) \) is a 0-commutative \(B \)-algebra. Hence

\[
((f \ast h) \ast (g \ast k))(x) = ((k \ast h) \ast (g \ast f))(x) \text{ by (13)}
= ((0 \ast (h \ast k)) \ast (0 \ast (f \ast g)))(x) \text{ by (8)}
= (0(x) \ast (h \ast k)(x)) \ast (0(x) \ast (f \ast g)(x)) = 0,
\]

for all \(x \in M \). Thus, \((f \ast h) \ast (g \ast k) \in M^\perp \) and so \(M^\perp \) is normal subalgebra of \(\text{Hom}(X, Y) \).

Now, let \(x \ast y, a \ast b \in \Theta^\perp \). Then \(f(x \ast y) = 0 \) and \(f(a \ast b) = 0 \), for all \(f \in \text{Hom}(X, Y) \). Since \(Y \) is a 0-commutative \(B \)-algebra, in similar way we can prove that \(f((x \ast a) \ast (y \ast b)) = 0 \), for all \(f \in \text{Hom}(X, Y) \), and then \((x \ast a) \ast (y \ast b) \in \Theta^\perp \), for all \(f \in \text{Hom}(X, Y) \). Therefore, \(\Theta^\perp \) is normal subalgebra of \(X \).

Acknowledgement

The author thanks the Dean of Scientific Research of King Abdulaziz University for the support to this paper.

References

